Contactor Relays 3TH30

Reliability and safety are pre-requisites in the choice of the control contactor. Siemens 3TH30 contactor relays satisfy these criteria and thus offer the right choice to the customer.

Applications

3TH30 are used in control circuits for switching and signaling purpose. Also they are used for interfacing with the electronic circuits.

Standards

Contactor relay conforms to IS /IEC 60947-5-1.
They also carry CE mark.

Range

Air break contactor relays are suitable for 10A, (AC15/AC14 rating) at 240 V AC and 10 A , (DC13 rating) at 24 V DC.

Benefits and features

Flexibility

- Choice of auxiliary contacts

3TH3O contactor relays comes with 4 contacts as a basic unit ($4 \mathrm{NO}, 3 \mathrm{NO}+1 \mathrm{NC}, 2 \mathrm{NO}+2 \mathrm{NC}$). However the contacts can be extended upto 8 contacts by adding maximum 4 auxiliary contact blocks to this basic unit. This offers flexibly in selection and configuration.

- Choice of mounting

3TH30 can be mounted on 35 mm DIN rail and they are also suitable for screw mounting.

Long Life

Superior design of current carrying parts, contact system and the magnet system increases the reliability which also results into higher electrical and mechanical endurance.

High reliability

- Double Break Parallel Bridge contact mechanism

This mechanism is available with 3TH30. Such contact mechanism ensures reliable contact at low voltage and low currents (5 mA at 17 V DC). It also offers unmatched reliability as well as capability to integrate directly into PLC or instrumentation circuits.

User friendliness and safety

- Positively driven contacts

3TH30 auxiliary contactors satisfy the conditions for positively driven operation between NO and NC contacts. NO and NC contact do not close at the same time. This is extremely important when they are used in safety circuits of critical applications. This ensures operator safety even during abnormal condition.

- SIGUT Termination

- Figure touch proof terminals

It protects against accidental contact with live parts which ensures operator safety.

- Funnel shaped cable entries

Reduce wiring time by facilitating quick location of the connecting wire.

- Cable end-stop

It decides the insertion depth of the connecting wires. Since the insertion depth is predetermined, insulation of the cable can be cut accordingly and the possibility of insulation getting inadvertently caught under the terminal is avoided.

- Captive Screws

This feature prevents the screws from falling down thereby facilitates the wiring. Hence, the auxiliary contactors are delivered with untightened terminals. This eliminates the operation of untightening terminals before wiring.

- Lug less termination

This feature helps in reducing the termination time.

Selection and ordering data

Contacts in basic unit	MLFB - With AC coil	MLFB - With DC coil	Std. pkg. (nos.)
4NO	3TH30 40-0A..	3TH30 40-0B..	1
$3 \mathrm{NO}+1 \mathrm{NC}$	3TH30 31-0А..	3TH30 31-0B..	
2NO+2NC	3TH30 22-0A..	3TH30 22-0B..	

.. Please add coil voltage code

AC Coil voltages

Coil voltage	24	42	110	230	415
Code	B0	DO	FO	PO	RO

DC Coil voltages

Coil voltage	24	42	48	110	220	250
Code	B4	D4	W4	F4	M4	N4

(Other coil voltages are also available.)

Technical data

Type		3TH30			3TX40..		
Standards		IS/IEC 60947-5-1					
Rated Operational Voltage		690 V					
Rated Impulse withstand voltage		8 kV					
Permissible ambient temp.	Storage Service	$\begin{aligned} & -50 \text { to }+80^{\circ} \mathrm{C} \\ & -25 \text { to }+55^{\circ} \mathrm{C} \end{aligned}$					
Mechanical endurance cycles		30 mill			10 mill		
Rated operating current le/AC12		16A			10A		
Rated operating current le/AC15/AC14 at operating voltage	$\begin{aligned} & 230 \mathrm{~V} \\ & 415 \mathrm{~V} \\ & 690 \mathrm{~V} \end{aligned}$	$\begin{aligned} & 10 \mathrm{~A} \\ & 4 \mathrm{~A} \\ & 2 \mathrm{~A} \end{aligned}$			$\begin{aligned} & 5.6 \mathrm{~A} \\ & 3.6 \mathrm{~A} \\ & 1.8 \mathrm{~A} \end{aligned}$		
Rated operating current le/DC13 at operating voltage		Current paths in series			Current paths in series		
		1	2	3	1	2	3
	$\begin{array}{r} 24 \mathrm{~V} \\ 110 \mathrm{~V} \\ 220 \mathrm{~V} \\ 440 \mathrm{~V} \end{array}$	$\begin{aligned} & 10 \mathrm{~A} \\ & 0.9 \mathrm{~A} \\ & 0.45 \mathrm{~A} \\ & 0.2 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 10 \mathrm{~A} \\ & 2.5 \mathrm{~A} \\ & 0.75 \mathrm{~A} \\ & 0.5 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 10 \mathrm{~A} \\ & 10 \mathrm{~A} \\ & 2 \mathrm{~A} \\ & 0.9 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 10 \mathrm{~A} \\ & 0.8 \mathrm{~A} \\ & 0.2 \mathrm{~A} \\ & 0.11 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 10 \mathrm{~A} \\ & 3.8 \mathrm{~A} \\ & 0.85 \mathrm{~A} \\ & 0.2 \mathrm{~A} \end{aligned}$	$\begin{aligned} & 10 \mathrm{~A} \\ & 10 \mathrm{~A} \\ & 2 \mathrm{~A} \\ & 0.5 \mathrm{~A} \end{aligned}$
Coil Voltage tolerance		0.8 to $1.1 \times$ Ue					
Rated coil input AC operated, 50 Hz DC operated Closing=when closed	Closing VA/p.f. When closed VA/P.f.	$\begin{aligned} & 68 / 0.82 \\ & 10 / 0.29 \\ & 6.2 \end{aligned}$					
Frequency of operation at AC15/DC13 duty	cycles/hr	3600					
Short circuit protection HRC fuse-links Miniature circuit breakers, (C-char.)		$\begin{aligned} & 16 \mathrm{~A} \\ & 16 \mathrm{~A} \end{aligned}$			$\begin{aligned} & 16 \mathrm{~A} \\ & 10 \mathrm{~A} \end{aligned}$		
Degree of protection		IP 20					

For 3TH30

| Operating time at $1 . \mathbf{0}^{*}$ Us | | AC | DC |
| :--- | :--- | :--- | :--- | :--- |
| Closing | Closing Delay NO | $10-25 \mathrm{~ms}$ | $30-70 \mathrm{~ms}$ |
| | Opening Delay NC | $7-20 \mathrm{~ms}$ | $28-56 \mathrm{~ms}$ |
| Opening | Opening Delay NO | $5-18 \mathrm{~ms}$ | $10-20 \mathrm{~ms}$ |
| | Closing Delay NC | $7-20 \mathrm{~ms}$ | $15-25 \mathrm{~ms}$ |

Accessories and ordering data

1. Surge suppressor

It is used to reduce the effect of switching overvoltages created during the opening of inductive circuits. Typically they are mounted outside the body of the contactor relay, and are connected in parallel with the coil terminals. Various techniques for the suppression of switching overvoltages can be employed. For example: RC element, Varistor etc

2. Add on blocks

Auxiliary Contact Block	Type Reference	Std. pkg. (nos.)
1NO	3TX40 10 2A	
1NC	$3 T X 4001$ 2A	10
1NO extended	$3 T X 40104 A$	
1NC extended	$3 T X 40014 A$	

Extended contacts (NO/NC) is early make NO and late break NC combination.

Dimensional drawings

```
3TH30-0A
```


3TH30-0B


```
(1) Auxiliary Contact Block
```

(2) Identification tag

Useful technical information

Variety of connections for DC applications

Single pole operation

Two poles in series

Three poles in series

Four poles in series

Power Contactors 3TF

For more than 110 years, Siemens has been developing and manufacturing industrial control products. We offer a wide product range which fulfills the demands of our customers regarding performance and reliability. Our aim is to make industrial operation easier ensuring flexible mounting, modular construction and high functionality. With 3TF contactors Siemens has been offering a tried tested trusted solution to control, switch and protect your motors upto 250 kW .

Applications

3TF power contactors are suitable for switching and controlling squirrel cage and slip-ring motors as well as other AC loads, such as solenoids, capacitors, lighting loads, heating loads and transformer loads.

Standards

Contactors conform to IS/IEC 60947-4-1. They also carry the CE mark.

Coordinated feeder

Contactors and bi-relays have been tested for type-2 coordination at $\mathrm{Iq}=50 \mathrm{kA}, 415 \mathrm{~V}$ AC, 50 Hz as per IS/IEC 60947-4-1, for both fuse protected as well as fuseless motor feeders.

Range

Air break contactors are available from 9 A to 475A in 3 pole version.

Also available in 2 pole AC version from 45A to 400A.

Benefits and features

Flexibility

- Choice of Auxiliary contacts

Contactor	Aux. contacts on basic unit	Permissible add-on contact blocks
9A/12A	1 NO	Upto 4NO or 4NC
9A/12A	1 NC	Upto 4NO or 2NC
16A/22A	-	Upto 4NO or 4NC
32A/38A	-	Upto 4NO or 4NC
45A to 475A	2NO+2NC	$2 \times(1 N O+1 N C)$

The customer can order desired number of contacts thereby reducing the cost.

- Choice of mounting

Contactor can be mounted on 35 mm DIN and they are also suitable for screw mounting (9-38A - DIN / Screw mounting and 45-475A - Screw mounting).

- Choice of coil voltages

AC 50 Hz coil code: 3 TF30 to 3TF56

Coil voltage (V)	24	42	110	230	415
Code	BO	DO	FO	PO	RO

Wide band AC 50 Hz coil code: 3TF30 to 3TF35

Coil voltage (V)	$70-140$	$150-280$	$260-460$
Code	W110	W220	W415

AC 50/60 Hz coil code: 3TF57

Coil voltage (V)	$110-132$	$220-240$	$380-460$
Code	F7	M7	Q7

DC coil code: 3TF30 to 3TF57

Coil voltage (V)	24	42	48	110	220	250^{+}
Code	B4	D4	W4	F4	M4	N4

+ For 3TF3 only
(Other coil voltages are also available.)

High performance

- No duration upto $55^{\circ} \mathrm{C}$

Contactors are suitable for operation in service temperature upto $55^{\circ} \mathrm{C}$ without derating. This avoids selection of higher rated contactor, thereby reducing cost.

- Long Life

Superior design of current carrying parts, contact system and the magnet system increases the reliability results into higher electrical and mechanical endurance.

- High short-time rating

Contactors have a high short-time rating, which makes them suitable for applications having high starting currents and long run-up times.

High reliability

- High insulation voltage and impulse withstand voltage capacity ensures reliable performance during occasional abnormal increase in supply voltage.
- Double break parallel bridge contact mechanism This mechanism is available for auxiliary contacts. Such contact mechanism ensures reliable contact at low voltage and low currents (5 mA at 17VDC). It also offers unmatched reliability. (Chances of 2 mal-operations in 100 mill. operations as against 4460 for single bridge contacts)

User friendliness and safety

- Arc Chamber Interlock (45A and above)

It prevents the contactor from switching ON, if the arc chamber is not fitted properly. Thus avoids accidents to plant and personnel.

- Positively driven contacts

3TF contactors satisfy the conditions for positively driven operation between the main power contacts and the NC contacts. NC contacts positively open before the main contact closes. This is extremely important when power contactors are used in safety circuits of critical applications.

- SIGUT Termination

- Figure touch proof terminals*

It protects against accidental contact with live parts which ensures operator safety.

- Funnel shaped cable entries

Reduce wiring time by facilitating quick location of the connecting wire.

- Cable end-stop

It decides the insertion depth of the connecting wires. Since the insertion depth is predetermined, insulation of the cable can be cut accordingly and the possibility of insulation getting inadvertently caught under the terminal, is avoided.

- Captive Screws

This feature prevents the screws from falling down thereby facilitates the wiring. Hence, the contactors are delivered with untightened terminals. This eliminates the operation of untightening terminals before wiring.

- Lug less termination

This feature helps in reducing the termination time.

[^0]Selection and ordering data

Contactor size	$\begin{aligned} & \text { Rated current (A) } \\ & \text { le AC3 at } \\ & 415 \mathrm{~V}, 50 \mathrm{~Hz}, 3 \mathrm{ph} \end{aligned}$	Motor kW at $415 \mathrm{~V} 50 \mathrm{~Hz}, 3 \mathrm{ph}$	Auxiliary contacts	AC 50 Hz coil Type PI. fill in coil voltage code	DC coil Type PI. fill in coil voltage code	Std. pkg. (nos.)
0	9	4	$\begin{aligned} & 1 \mathrm{NO}^{\$} \\ & 1 \mathrm{NC}^{\$} \end{aligned}$	3TF30 10-0A.. 3TF30 01-0A..	3TF30 10-0B.. 3TF30 01-OB..	1
	12	5.5	$\begin{aligned} & 1 \mathrm{NO}^{\$} \\ & 1 \mathrm{NC}^{\$} \end{aligned}$	3TF31 10-0A.. 3TF31 01-0A..	3TF31 10-0B.. 3TF31 01-OB..	
1	16	7.5	-\$	3TF32 00-0A..	3TF32 00-0B..	
	22	11	-\$	3TF33 00-0A..	3TF33 00-0B..	
2	32	15	-\$	3TF34 00-0A..	3TF34 00-0B..	
	38	18.5	_\$	3TF35 00-0A..	3TF35 00-0B..	
3	45	22	$2 \mathrm{NO}+2 \mathrm{NC}^{\$}$	3TF46 02-0A..ZA01@ ${ }^{\text {® }}$	3TF46 02-0D..ZA01@ ${ }^{\text {® }}$	
	63	30	$2 \mathrm{NO}+2 \mathrm{NC}^{\$}$	3 TF47 02-0A..ZA01@ ${ }^{\text {® }}$	3TF47 02-0D..ZA01@ ${ }^{\text {® }}$	
	70	37	$2 \mathrm{NO}+2 \mathrm{NC}^{\$}$	3 TF47 72-0A..	3TF47 72-0D..	
4	75	42	$2 \mathrm{NO}+2 \mathrm{NC}^{\$}$	3TF48 22-0A..ZA01@ ${ }^{\text {® }}$	3TF48 22-0D..ZA01@ ${ }^{\text {® }}$	
	85	45	$2 \mathrm{NO}+2 \mathrm{NC}^{\$}$	3TF49 22-0A..ZA01@	3TF49 22-0D..ZA01@	
6	110	55	$2 \mathrm{NO}+2 \mathrm{NC} \$$	3TF50 02-0A..	3TF50 02-0D..	
	140	75	$2 \mathrm{NO}+2 \mathrm{NC}^{\$}$	3TF51 02-0A..	3TF51 02-0D..	
8	170	90	$2 \mathrm{NO}+2 \mathrm{NC}^{\$}$	3TF52 02-0A..	3TF52 02-0D..	
	205	110	$2 \mathrm{NO}+2 \mathrm{NC}^{\$}$	3TF53 02-0A..	3TF53 02-0D..	
10	250	132	$2 \mathrm{NO}+2 \mathrm{NC}^{\$}$	3TF54 02-0A..	3TF54 02-0D.. ${ }^{1)}$	
	300	160	$2 \mathrm{NO}+2 \mathrm{NC}^{\$}$	3TF55 02-0A..	3TF55 02-0D. ${ }^{1)}$	
12	400	200	$2 \mathrm{NO}+2 \mathrm{NC}^{\$}$	3TF56 02-0A..	3TF56 02-0D.. ${ }^{1}$	
	475	250	$2 \mathrm{NO}+2 \mathrm{NC} \$$	3TF57 02-0C..	3TF57 02-0D.. ${ }^{1}$)	

[^1]
Coil voltage code AC 50Hz: 3TF30 to 3TF56

Coil voltage	24	42	110	230	415
Code	BO	DO	FO	PO	RO

Coil voltage code AC 50/60 Hz: 3TF57

Coil voltage (V)	$110-132$	$220-240$	$380-460$
Code	F7	M7	Q7

Coil voltage code DC: 3TF30 to 3TF57

Coil voltage (V)	24	42	48	110	220	250^{+}
Code	B4	D4	W4	F4	M4	N4

+ For 3TF3 only
${ }^{2)}$ Coil voltage code AC 50Hz: 3TF (2 Pole AC Contactor)

Coil voltage	110	230	415
Code	FO	PO	RO

(Other coil voltages are also available)

Auxiliary contact blocks

For Contactor	Description	Type	Std. pkg. (nos.)
3TF30 to 35	$\begin{gathered} \text { 1NO } \\ \text { 1NC } \\ \text { 1NO ext } \\ \text { 1NC ext } \end{gathered}$	3TX4 010-2A 3TX4 001-2A 3TX4 010-4A 3TX4 001-4A	10
3TF46 to 57	Second 1NO+1NC Left Second 1NO+1NC Right	$\begin{aligned} & 3 T Y 7 \text { 561-1K } \\ & 3 T Y 7 \text { 561-1L } \end{aligned}$	1

2 Pole AC contactors - 3TF
For single phase and 2 phase applications with AC coils

Contactor Size	Rated current le (A) AC3, 415V	Type ${ }^{2)}$	Std. pkg. (nos.)
3	45	3TF46 02-0A..ZB01	
3	63	3TF47 02-0A..ZB01	
3	70	3TF47 72-0A..ZB01	
6	110	3TF50 02-0A..ZB01	
6	140	3TF51 02-0A..ZB01	1
8	170	3TF52 02-0A..ZB01	
8	205	3TF53 02-0A..ZB01	
10	250	3TF54 02-0A..ZB01	
10	300	3TF55 02-0A..ZB01	
12	400	3TF56 02-0A..ZB01	

Technical data

[^2]3) On-load factor (ED) in $\%=\frac{\text { ontime } \times 100}{\text { cycle time }}$

Max. switching freq. $z=50$ per hour. Ratings at higher frequency upon enquiry.

4) Ratings for capacitor - banks in parallel - upon enquiry. Minimum inductance of $6 \mu \mathrm{H}$ required between parallel connected capacitors.

Power Contactors Technical Data

Auxiliary contacts

Rated thermal current $I_{t h}=$ rated operational current le / AC-12	A	10	10
Rated operational current le / AC-15/AC-14 at rated operational voltage Ue upto 125 V	A	10	10
220V	A	10	6
415 V	A	5.5	3.6
500 V	A	4	2.5
Rated operational current le / DC12 at rated operational voltage Ue upto 48 V	A	10	10
110 V	A	2.1	3.2
220 V	A	0.8	0.9
440 V	A	0.6	0.33
Rated operational current le / DC13 at rated operational voltage Ue upto 24 V	A	10	10
48 V	A	5	5
110 V	A	0.9	1.14
220 V	A	0.45	0.48
440 V	A	0.25	0.13

Conductor cross-sections

[^3]
8) The opening time delay increases when the contactor coil is protected against voltage peaks. (e.g. Varistor: +2 to +5 ms)

Electrical Life Curves

3TF30 to 3TF49 contactors

3TF50 to 3TF57 contactors

Typical Circuit Diagrams

Direct On Line starter

Forward / Reverse starter (Electrical Interlocking)

Star Delta starter

Main circuit

Control circuit for push button control (momentary command)

S0 $=$ 'OFF' Push button
S1 $=$ 'ON' Push button
K1 $=$ Line contactor
K2 $=$ Star contactor
K3 $=$ Delta contactor
K4 $=$ Star delta timer (7PU60 20)
F2 $=$ Overload relay
F1 $=$ Backup fuse
F3 $=$ Control circuit fuse

Auto Transformer starter

Please refer page no. 70 for selection of switchgear for autotransformer starting method

Internal connection diagram for DC coil circuits

$\begin{aligned} \text { K1 : } & \text { Sizes } 3 \text { to 6, } \\ & \text { 3TF46 to 3TF51 }\end{aligned}$

$\begin{array}{ll}\text { K1 }: & \text { Sizes } 8 \text { to } 12 \\ & \text { 3TF52 to 3TF56 } \\ \text { K2 }: & \text { 3TF30 10 OB.. for 3TF52-55 } \\ & \text { 3TF32 00-OB.. for 3TF56 }\end{array}$

$\begin{aligned} \text { K1 }: & \text { Size 12 } \\ & \text { 3TF57 } \\ \text { K2 }: & 3 T C 44 \text { 17 4A.. }\end{aligned}$

The control circuits indicated by dotted lines are to be wired by customer.

Terminal Designation

Permissible Mounting Position

Accessories and ordering data

1. Mechanical interlocking kit

Mechanical interlock is required when the supply from two different sources is available. Also the same is required for the application involving reversing of motor. Here two contactors are mechanically interlocked with the help of mechanical interlock kit. This ensures closing of only one contactor at a time. Thus prevents a short circuit upon load changeover from one contactor to another.

For Contactor		MLFB	Std. pkg. (nos.)
AC3 Rating	Contactor		
9 to 38A	3TF30 to 35	3TX4 091-1A ${ }^{\text {\# }}$	10
45/63/70A	3TF46/47/47-7	$3 T X 7$ 466-1 YA0	2
75/85A	3TF48/49	$3 T X 7$ 486-1 YA0	2
110/140A	3TF50/51	$3 T X 7$ 506-1YAO	2
170/205A	3TF52/53	$3 T X 7$ 526-1YAO	2
250/300A	3TF54/55	$3 T X 7$ 546-1 YA0	2
400 A	3TF56	$3 T X 7$ 566-1YAO	2
110/170 A	3TF50/52	3TX7 526-1YA09	1
170/250 A	3TF52/54	3TX7 546-1YA09	1

\#: W/O base plate (not required)

2. Surge suppressor

It is used to reduce the effect of switching overvoltages created during the opening of inductive circuits. Typically they are mounted outside the body of the contactor, and are connected in parallel with the coil terminals. Various techniques for the suppression of switching overvoltages can be employed. For example: RC element, Varistor etc.

RC Element:

The effective increase in the capacitance of the coil circuit reduces the amplitude and rate of rise of switch off overvoltage spikes to such an extend that no rapid restriking occur.

Varistor:

Varistor limit the maximum value of the overvoltage because they become highly conductive above a threshold value. Until this threshold value is reached shower discharge occurs for small duration.

Selection table:

Surge suppressor (Varistor) for 3TF30-3TF35

Coil Voltage		Type	Std. pkg. (nos.)
AC	DC		
$24-48 \mathrm{~V}$	$24-70 \mathrm{~V}$	3 3TX7 402-3GY1	
$48-127 \mathrm{~V}$	$70-150 \mathrm{~V}$	3 3TX7 402-3HY1	
$127-240 \mathrm{~V}$	$150-250 \mathrm{~V}$	3 3TX7 402-3JY1	10
$240-400 \mathrm{~V}$	-	3 3TX7 402-3KY1	
$400-600 \mathrm{~V}$	-	3 3TX7 402-3LY1	

Surge suppressor (Varistor) for 3TF46-56

Coil Voltage		Type	Std. pkg. (nos.)
AC	DC		
Less than 48V	$24-70 \mathrm{~V}$	3 3TX7 462-3GY1	
$48-127 \mathrm{~V}$	$70-150 \mathrm{~V}$	3 3TX7462-3HY1	
$127-240 \mathrm{~V}$	$150-250 \mathrm{~V}$	3 3TX7 462-3JY1	10
$240-400 \mathrm{~V}$	-	$3 T X 7462-3$ KY1	
$400-600 \mathrm{~V}$	-	3 3TX7462-3LY1	

Surge suppressor (RC Element) for 3TF30-3TF35

Coil Voltage		Type	Std. pkg. (nos.)
AC	DC		
$24-48 \mathrm{~V}$	$24-70 \mathrm{~V}$	3 TX7 402-3RY2	
$48-127 \mathrm{~V}$	$70-150 \mathrm{~V}$	3 TX7 402-3SY2	
$127-240 \mathrm{~V}$	$150-250 \mathrm{~V}$	3 TX7 402-3TY2	10
$240-400 \mathrm{~V}$	-	3 TX7 402-3UY2	
$400-460 \mathrm{~V}$	-	3 3TX7402-3VY2	

3. Connector

The 3TS90 connector is used to mount the motor protection circuit breaker 3 VU on the contactor 3TF with screw terminals. It enables mechanical and electrical connection between contactor and motor protection circuit breaker.

Range:

Size of connector	MPCB		Contactor		MLFB of Connector	Std. pkg. (nos.)
	MLFB	Current Rating	MLFB			
I	3VU13	$\begin{gathered} 0.16 \text { to } \\ 20 \mathrm{~A} \end{gathered}$	3TF30/31	9/12 A	3TS90 01-8K	1
11	3VU13	6 to 25A	3TF32/33	16/22A	3TS90 02-8K	1

Benefits:

Direct mounting of 3VU MPCB on 3TF contactor eliminates the need of power wiring and ensures secure connection. In addition, the assembly time and size of the feeder is reduced which results in cost saving. The overall assembly also looks contemporary.

Spares and ordering data

1. Auxiliary Contact Blocks

In-built contact configuration
Size 0 (9-12A)

Add - on Contact Blocks:

2. Main contact kits / arc chambers / AC-DC coils

For contactor type (AC3 rating)	Main contact kits (6 fixed \& 3 moving contacts)	Arc chambers	AC coils ${ }^{1)}$	DC coils ${ }^{1)}$	Std. pkg. (nos.)
3 TF30 (9A)	-	-	3TY7 403-0A..	3TY4 803-0B..	1
3 TF31 (12A)	-	-			
3 TF32 (16A)	3 TY7 420-0A	-			
3 TF33 (22A)	3 TY7 430-0A	-			
3 TF34 (32A)	3 TY7 340-0C	3TY7 342-0C			
3TF35 (38A)	3TY7 350-0C	3TY7 352-0C	3TY7 443-0A..	3TY7 443-0B..	
3TF46 (45A)	3 TY7 460-0YA	3 TY7 462-0YA	3TY7 463-0A..	3TY7 463-0D..	
3 TF47 (63A)	3 YY7 470-0YA	$3 T Y 7$ 472-0YA			
$3 T F 477$ (70A)	3 YY7 477-0YA	$3 T Y 7$ 477-0YD			
3 TF48 (75A)	3 TY7 480-0A	3 TY7 482-0A	3TY7 483-0A..	3TY7 483-0D..	
3TF49 (85A)	3 TY7 490-0A	3 TY7 492-0A			
3TF50 (110A)	3 YY7 500-0YA	$3 T Y 7$ 502-0YA	3TY7 503-0A..	3TY7 503-0D..	
3TF51 (140A)	3TY7 510-0YA	$3 T Y 7$ 512-0YA			
3 TF52 (170A)	3 TY7 520-0YA	$3 T Y 7$ 522-0YA	3TY7 523-0A..	3TY7 523-0D..	
3TF53 (205A)	3 YY7 530-0YA	3 TY7 532-0YA			
3TF54 (250A)	3 TY7 540-0YA	$3 T Y 7$ 542-0YA	3TY7 543-0A..	3TY7 543-0D..	
3TF55 (300A)	3TY7 550-0YA	$3 T Y 7552-0 Y A$			
3TF56 (400A)	3 TY7 560-0YA	$3 T Y 7$ 562-0YA	3 YY7 563-0A..	3TY7 563-0D..	
3 TF57 (475A)	3 TY7 570-0YA	$3 T Y 7$ 572-0YA	$3 T Y 7$ 573-0C	3TY7 573-0D..	

${ }^{1)}$ Please fill in coil voltage code from table below

Coil voltage code AC 50Hz: 3TF30 to 3TF56

Coil voltage	24	42	110	230	415
Code	BO	DO	FO	PO	RO

Coil voltage code AC $50 / 60 \mathrm{~Hz}$: 3TF57

Coil voltage (V)	$110-132$	$220-240$	$380-460$
Code	F7	M7	Q7

Coil voltage code DC: 3TF30 to 3TF57

Coil voltage (V)	24	42	48	110	220	250^{+}
Code	B4	D4	W4	F4	M4	N4

[^4]
Dimensional drawing

3TF30/31 AC Coil

3TF32/33 AC Coil

3TF34/35 AC Coil

3TF30 to 3TF32, with mechanical interlock kit

Type	a (AC coil)	a (DC coil)	b1	b2	c
3TF30/31	116	148	90	100	78
3TF32/33	127	159	91	101	85

3TF30/31 DC Coil

(1) Auxiliary contact block (2) Identification tag

3TF32/33 DC Coil

3TF34/35 DC Coil

Notes

1) Dimensions for coil terminals
2) Dimensions for mounting terminals

Minimum clearance from insulated components $=5 \mathrm{~mm}$
Minimum clearance from earthed components $=10 \mathrm{~mm}$
3) size of power terminals
4) Size of auxiliary terminals

3TF48 and 3TF49

Type	a1	c
3TF48	8	107
3TF49	10.5	116

3TF52 and 3TF53

Notes

1) Minimum clearance from insulated components $=3 \mathrm{~mm}$ Minimum clearance from earthed components $=10 \mathrm{~mm}$
2) Dimension with second auxiliary contact block on both sides
3) Dimension for coil terminal.

3TF47 7

3TF50 and 3TF51

3TF54/55

4) Dimension for mounting.
5) Dimension for power terminal.
6) 3TF53 The conductor bars protrude over the contactor edges on top and bottom by 2 mm each.

Type	a	b	c	d
3TF56	25	200	178	48
3TF57	30	209.5	182	52

3TF46/47/477/48/49
with Mechanical Interlock Kit

For Contactor	a_{1}	a_{2}	b_{1}	b_{2}	c_{1}	c_{2}	d_{1}	e	g_{1}
3TF46/47/477	240	180	165	145	141	18	117	150	$7(M 6)$
3TF48/49	260	200	175	155	158	18	127	160	$7(M 6)$

3TF50 and 3TF52 with Mechanical Interlock Kit 3TF52 and 3TF54 with Mechanical Interlock Kit

Type	a1	a2	b1	b2	c1	c2	d1	g1
3TF52 \& 50	330	270	240	215	203	18	154.5	11
3TF54 \& 52	350	290	265	240	219	21	167	11

3TF50 to 3TF57
with Mechanical Interlock Kit

For Contactor	a_{1}	a_{2}	b_{1}	b_{2}	c_{1}	C_{2}	d_{1}	e	g_{1}
3TF50/51	300	240	210	185	160	18	147	260	9 (M8)
3TF52/53	330	270	240	215	203	18	162	315	9 (M8)
3TF54/55	350	290	265	240	219	21	172	375	11 (M10)
3TF56/57	380	310	265	240	243	21	187	385	11 (M10)

Notes

1) Minimum clearance from insulated components $=3 \mathrm{~mm}$ Minimum clearance from earthed components $=10 \mathrm{~mm}$
2) Dimension with second auxiliary contact block on both sides
3) Dimension for coil terminal.
4) Dimension for mounting.
5) Dimension for power terminal.

Useful information

Categories of duty - as per IEC 947 / IS 13947

Current	Utilisation Categories	Typical Application
	AC1	Non-inductive or slightly inductive loads, resistance furnances
	AC2	Slipring motors; starting, switching off
	AC3	Squirrel-cage motors; starting, switching off motors during running ${ }^{(1)}$
	AC4	Squirrel-cage motors; starting, plugging, inching
	AC5a	Switching of electric discharge lamp controls
	AC5b	Switching of incandescent lamps
	AC6a	Switching of transformers
	AC6b	Switching of capacitor banks
	AC7a	Slightly inductive loads in household appliances and similar applications
	AC7b	Motorloads for household applications
	AC8a	Hermetic refrigerant compressor motor ${ }^{(2)}$ control with manual resetting of overload releases
	AC8b	Hermetic refrigerant compressor motor ${ }^{(2)}$ control with automatic resetting of overload releases
DC	DC1	Non-inductive or slightly inductive loads, resistance furnaces
	DC3	Shunt-motors: starting, plugging, inching, dynamic braking of d.c motors
	DC5	Series-motors: starting, plugging, inching, dynamic braking of d.c motors
	DC6	Switching of incandescent lamps

(1) AC3 category may be used for occasional inching (jogging) or plugging for limited time periods such as machine set-up; during such limited time periods the number of such operations should not exceed five per minute or more than ten in a 10-min period.
(2) Hermetic refrigent compressor motor is a combination consisting of a compressor and a motor, both of which are enclosed in the same housing, with no external shaft or shaft seals, the motor operating in the refrigent
(3) Selection of contactors for utilisation categories from AC-5a to AC-8b and DC6 upon enquiry.

Contact life calculation:

Contactors have bounce free operation. Electrical life is influenced by the breaking currents. For normal AC3 duty the breaking current is the rated operational current and for AC4 duty, the typical breaking current is 6 times the rated operational current. In case of mixed duty, the expected life is determined as under
$X=\frac{A}{1+\frac{C}{100}\left(\frac{A}{B}-1\right)}$
Where
$X=$ expected life for mixed duty
$A=$ expected life for normal AC3 duty
B $=$ expected life for 100% AC4 duty
C = proportion of inching operations as a percentage of total operations.

Recommended selection of contactors for hoisting duty (upto 85A)

In hoisting operation, slipring motors are generally used. For this typical hoisting duty, we recommend the contactors listed in the following table.

Contactor Type	Stator Protection Maximum load current with hoisting motor. For intermittent duty S3				Rotor Protection Maximum load current with hoisting motor(Delta circuit). For intermittent duty S3				Max rotor standstill voltage
	25\%	40\%	60\%	100\%	25\%	40\%	60\%	100\%	
	A	A	A	A	A	A	A	A	V
3TF31	10	10	9	8	15	14	13	12	660
3TF33	17	16	15	13	25	24	22	20	660
3TF45	28	25	23	20	42	38	35	30	660
3TF47	49	45	40	30	73	68	60	45	750
3TF49	68	62	54	45	100	95	80	68	1000

Recommended substitutes for discontinued 3TA/3UA19

For standard application (AC3 duty)

AC3 rating $415 \mathrm{~V}, 50 \mathrm{~Hz}$	Size	Discontinued contactor	Discontinued bi-relay	Size	Contactor	Bi-relay	Motor kW 415V, 50 Hz , 3ph.
7.8A		$\begin{aligned} & \text { 3TA67 } \\ & \text { 3TA76 } \end{aligned}$			3TF30		3.8
9A				0		3UA5000	4
12A	1	3 TA21	3UA1911		3TF31		5.5
16A					3TF32	$3 \mathrm{UA5200}$	7.5
22A		3 TA11		1	3TF33	UA5200	11
30A		3 TA22					15
32A	2			2	3TF34	3UA5500*	18.5
38A			3UA1928		3TF35		20
45A					3TF46-Z	3UA5800-71	22
63A	4	3TA24 ${ }^{1}$		3	3TF47-Z	-800-Z1	30
70A					3TF47-7	3UA5800-Z2	37
105A		3 TA16		4	3TF48/49	3UA5800-Z1	45
110A			ЗUA1938		3TF50	3UA5830	55
140A		3TA28-Y		6	3TF51		75
170A					3TF52		95
200A		3 TA28	3UA66	8	3TF53		110
250A					3TF54	3UA6230	132
300A	12	3 TB56	3UA66	10	3TF55		160
400A					3TF56		220
475A	-	-	-	12	3TF57	3UA6830	250

\# use 3UA50 + 3UX1418 to replace 3UA19 28 (upto 12A) use 3UA52 + 3UX1420 to replace 3UA19 28 (upto 25A)
${ }^{1)}$ For crane/hoisting/inching application, replace 3TA24 with 3TF48/49 contactors

For inching application (AC4 duty)

Discontinued contactor		New contactor	
Size	Type 3TA	Size	Type 3TF
1	3TA21	1	3 3TF32
1	3TA11	1	3 TF33
2	3TA22	2	3 TF34
2	3TA13	2	3 TF35
4	3TA24	4	3 TF48
4	3TA16	6	3 TF50
8	3TA28	8	3 3TF52
12	3TB56	12	3 TF56

Adaptor plate for replacing 3TA

Adaptor plates, to replace	Type
3TA61-0A by 3TH80/82-0A	

For crane application (AC2 duty, S3 100\% inching)

Discontinued contactor		New contactor	
Size	Type 3TA	Size	Type 3TF
1	3TA21/11	1	3 3TF33
2	3TA22/13	2	3TF35
4	3TA24	4	3 3TF49
8	3TA28	8	3 3TF5200*
12	$3 T B 56$	12	3 3TF5600*

* Hoisting duty contactors, designed specially for hoisting duty.

Contactors for Hoisting Duty

AC slipring motors are most commonly used for the hoisting applications. AC2 duty pertains to starting and switching off the slipring motors. In case of hoisting duty breaking current is the starting current and frequency of switching is high.

The table shows the making and breaking capacity at normal and at hoisting application where le indicates the rated full load current.

	Making	Breaking
During Normal operation at full load	2.5 * le	le
Hoisting application at full load	2.5 * le	2.5 * le
During Normal operation at partial load	less than 2.5 * le	Less than le

Application

AC-2 operation is the typical duty for starting and switching off fully-loaded slipring motors in the starting phase. The rating of the contactor, to switch the motors, is selected primarily on the basis of rated make \& break capacity and desired electrical endurance.

Standard

The contactors comply with the "Regulations to low voltage switchgear" of DIN VDE 0660 and IS/IEC 60947-4-1.

Range

Hoisting duty contactors are available from 110A to 400A (AC2IAC3 rating).

Benefits and features

Long life

- "Hoisting Duty "Contactors are provided with new design of contacts (AgSnO_{2} instead of AgCdO) resulting in high electrical and mechanical life.
- They are electrically superior in taking care of excessive stresses coming on contactors during their operations in crane applications.

Reliability

- The "Hoisting Duty" Contactors have vacuum impregnated coils which are suitable for high frequency switching and high vibrations. This helps in reducing coil failures.
- Side mounted auxiliary contact blocks are screw mounted and not snap fitted to withstand vibrations and high frequency operation.

Operator safety

- Arc Chamber Interlock

It prevents the contactor from switching ON, if the arc chamber is not fitted properly. Thus avoids accidents to plant and personnel.

- Finger touch proof terminals

It protects against accidental contact with live parts which ensures operator safety.

High performance

- No duration upto $55^{\circ} \mathrm{C}$

Contactors are suitable for operation in service temperature upto $55^{\circ} \mathrm{C}$ without derating. This avoids selection of higher rated contactor, thereby reducing cost.

Selection and ordering data

Hoisting duty contactors -
For high switching frequency / inching applications with AC coils, $2 \mathrm{NO}+2 \mathrm{NC}$ aux. contacts

Contactor size	Rated current le (A) AC2/AC3 at 415V	Type	Std. pkg. (nos.)
6	110	3TF50 00-0A..	
8	170	3TF52 00-0A..	
10	250	3TF54 00-0A..	1
12	400	3TF56 00-0A..	

Coil voltages:

Coil voltage -50 Hz	110 V	230 V	415 V
Code	FO	PO	RO

(Other coil voltages are also available)

Technical Information

A. Recommended selection of contactors for hoisting duty

In hoisting operation, slipring motors are generally used. For this typical hoisting duty, we recommend the contactors listed in the following table.

Contactor Type	Stator Protection Maximum load current with hoisting motor. For intermittent duty S3				Rotor Protection Maximum load current with hoisting motor(Delta circuit). For intermittent duty 53				Max rotor standstill voltage
	25\%	40\%	60\%	100\%	25\%	40\%	60\%	100\%	
3TF50 00 0A	100	88	78	65	150	130	115	95	1000
3TF52 00 OA	145	130	115	95	220	195	170	150	1000
3TF54 00 OA	225	200	180	160	340	300	270	240	1000
3TF56 00 OA	355	325	290	250	530	490	435	375	1000

When 3 conducting paths are connected in parallel, the maximum load current rises to 2.5 times the value given in this table. When 2 conducting paths are connected in parallel, it rises to 1.8 times the value given in this table.

B. Selection of contactors for contact endurance: with normal and inching operation

Contactors suffer more erosion during inching operation than when stopping motors from a steady speed, i.e. normal operation. With slipring motors the starting current can be up to 2.5 times the rated current of the motor which means that this current has to be broken when inching is taking place. During normal operation, on the other hand, only the rated current has to be broken under full-load; under part-load it is even less.
Determining contact endurance from AC-2 duty ($\mathrm{Ic}=2.5 \times \mathrm{le}$) will only give correct results when 100% inching operation is involved.

Max. permissible current and attainable contact endurance when braking starting current given below PF ≥ 0.4 ($2.5 \times \mathrm{le}$)		Contact life when breaking the stator contactor load currents for S3-100\% duty, $\mathrm{Ic}=\mathrm{le}$, no inching		Contactor Type
A	Operating cycles Approx.	A	Approx. Operating cycles	
$\begin{aligned} & 275 \\ & 425 \\ & 625 \end{aligned}$		$\begin{array}{r} 65 \\ 95 \\ 160 \end{array}$	$\begin{aligned} & 3,500,000 \\ & 3,100,000 \\ & 2,700,000 \end{aligned}$	3 TF5000 3TF5200 3TF5400
1000	150,000	250	2,500,000	3TF5600

The maximum permitted current (e.g. locked-rotor current of motor) must not exceed the values given in the "Max. starting current and attainable contact endurance" column. The values cannot be increased by paralleling pole assemblies.

C. Selection of contactors for contact endurance: with mixed operation

When mixed operation is involved, i.e. primarily breaking of the motor rated current but with some breaking of higher currents due to inching, the endurance of the contacts can be calculated approximately from the following equation:

$$
X=\frac{A}{1+\frac{C}{100}\left(\frac{A}{B}-1\right)}
$$

Where
X = Contact endurance with mixed operation cycles.
$A=$ Contact endurance with normal operation $(\mathrm{la}=\mathrm{le})$ in operating cycles, from Fig. 1.
$B=$ Contact endurance with inching operation ($\mathrm{I} a=$ Multiple of le) in operating cycles, from Fig. 2, Breaking current la/AC-2 $=2.5 x \mathrm{le}$.
C $=$ Proportion of inching in total operating Cycles in \%.

Fig. 1 Contact endurance of 3TF contactors as a function of breaking current when switching resistive and inductive AC loads.

Fig. 2 Contact endurance for mixed operation as a function of motor rated current. Motor on rated load, inching at 2.5 times motor rated current (slipring motor).

The contact endurance as a function of the motor rated current with mixed operation can be determined from Fig. 2 for proportions of inching of $0,10,20,50$ and 100%. The values obtained are only applicable if rated motor load is used continuously. In practice therefore, the contact endurance should be greater.

Example 1

Motor rated current 150A. Selected contactor: 3TF5600

Contact endurance in operating cycles at 400V With inching of				
0%	10%	20%	50%	100%
5.4×106	4.6×106	3.9×106	2.3×106	1.4×106

Example 2

Maximum permitted motor rated current for a contact endurance of $2,000,000$ operating cycles at 400 V .

Stator contactor	Permitted rated current of slipring motor with inching			
Type	10% approx. A	20\% approx. A	50% approx. A	100% approx.
	A			

D. NOMOGREM

Apart from knowing the figure for contact endurance in operating cycles, users are also interested to know what period of time this amounts to before the contacts have to be changed. The value can be ascertained from the nomogram in Fig. 3. using the Nomogram

Fig. 3 Nomogram for determining contact endurance in year (250 working days) and months with daily operating hours of $4,8,12,16,20$ and 24 h .

Draw a line from the point on the left-hand scale indicating the required number of operating cycles to the point on the right hand scale indicating the required number of operating cycles per hour. Then, from the point where this line intersects with the centre axis, draw a horizontal line to the left or right scale for the actual number of daily operating hours.

Note: If a figure of 365 days per annum is being employed instead of 250, the total operating time obtained from the nomogram must be multiplied by 0.68 .

Example:

Service requirements: 1.4 million operating cycles endurance, 200 operating cycles per hour, 16 hours service per day.

Result:

Total operating time approx $=18$ months.

Accessories and ordering data:

AC Coils:

Spare coils for	Type ${ }^{1)}$	Std. pkg. (nos.)
3TF50 00 0A..	3 TY7 503-0A ..0-0H	1
3TF52 00 0A..	$3 \mathrm{TY7} 523-0 \mathrm{~A}$. $\mathrm{O}-0 \mathrm{OH}$	
3TF54 00 0A..	3 TY7 543-0A ..0-0H	
3TF56 00 0A..	3 TY7 563-0A ..0-0H	

${ }^{1)}$ Coil voltage code AC 50Hz:

Coil voltage	110	230	415
Code	FO	PO	RO

(Other coil voltages are also available)

Spares and ordering data

Contact kits:

Spare contact kit for	Type	Std. pkg. (nos.)
3TF50 00 0A..	3 3TY7 500-0ZA	
3TF52 00 0A..	$3 T Y 7520-0 Z A$	
3TF54 00 0A..	3 3TY7 540-0ZA	1
3TF56 00 0A..	$3 T Y 7560-0 Z A$	

Dimensional drawing

The "Hoisting Duty" Contactors are mechanically similar to our existing 3TF power contactors. Therefore they have exactly same dimensions as the corresponding 3TF power contactors.

Please refer page nos. 21 and 22.

Useful technical information

Starting method of Slip ring motor (AC2 duty):

Three types of the contactors are used to control the three phase slip-ring motors: the stator contactor, the acceleration contactor and the rotor short circuit contactor.

Stator contactor

Initially the stator contactor (K1) is closed to energize the motor. None of the rotor contactor (K2 or K3) is closed yet. Hence all the resistances are present in the rotor circuit. The starting current can reach to 1.5 to 4 times of the rated operational current. The AC2 rating of the stator contactor is selected as per the load factor of the motor.

$$
\text { Load factor }=\frac{\text { on time } * 100}{\text { Cycle time (on time }+ \text { rest time) }}
$$

Acceleration contactor

Now acceleration contactor (K2) is closed which short circuits the resistances (R 1). The sizing of this contactor (K2) is as per AC1 rated operational current. The current flow time per cycle and the number of cycles per hour has to be considered for the selection.

Rotor short circuit contactor

At the end, the rotor short circuit contactor (K3) closes, short circuiting the last resistance bank (R2) thus remove all the resistances from the rotor circuit. The starting period is hence completed. The duty of this contactors is characterized by the small closing stress. the decisive factor is the thermal stress. The duty factor is considered while finding out the permissible values of the rated operational rotor current for rotor contactors.

Picture below shows the acceleration (K2) and the rotor short circuiting contactor (K3) in the delta connection. If they are connected in star then the ratings are reduced by 35%.

[^0]: * Finger touch proof terminals are available upto 85 A

[^1]: 1) Please connect DC coil circuit as recommended on page 16
 \$ For more auxiliary contacts please refer table below - "auxiliary contact blocks"
 @ For box type (SIGUT) terminal, order 2 nos. 3TX7 460-0E
[^2]: 1) As per IS/IEC 60947-1
 2) Ratings at 1000 VAC - upon enquiry.
[^3]: 5) With AC coil. With DC coil: 1000 oprs/hr.
 6) Rated value of the control voltage.
 7) Including switching contactor.
[^4]: + For 3TF3 only
 (Other coil voltages are also available)

